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Species independence of mutual information in coding and noncoding DNA
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We explore if there exist universal statistical patterns that are different in coding and noncoding DNA and
can be found in all living organisms, regardless of their phylogenetic origin. We find(ith&te mutual
information functionZ has a significantly different functional form in coding and noncoding DNA. We further
find that (ii) the probability distributions of theverage mutual informatiod are significantly different in
coding and noncoding DNA, whilgiii) they are almost the same for organisms of all taxonomic classes.
Surprisingly, we find thaf is capable of predicting coding regions as accurately as organism-specific coding
measures.

PACS numbe(s): 87.10+e, 02.50-r, 05.40-a

I. INTRODUCTION
H[X]=—ke 2, piInp;,
DNA carries the genetic information of most living organ- '

isms, and the goal of genome projects is to uncover that
genetic information. Hence, genomes of many different spe- H[Y]= —kBE g;Ing;, and
cies, ranging from simple bacteria to complex vertebrates, i
are currently being sequenced. As automated sequencing
technigues have started to produce a rapidly growing amount
of raw DNA sequences, the extraction of information from
these sequences becomes a scientific challenge. A large frac-

tion of an organism’s DNA is not used for encoding proteinsyhere kg denotes the Boltzmann constant.Xfand Y are
[1]. Hence, one basic task in the analysis of DNA sequencesgiatistically independent then H[X]+H[Y]=H[X,Y],
is the identification of coding regions. Since biochemicalyhich states that the Boltzmann entropyeistensive If X

techniques alone are not sufficient for identifying all codingand v are statistically dependenthen the sum of the entro-
regions in every genome, researchers from many fields have

been attempting to find statistical patterns that are different ¢ 008
in coding and noncoding DNA2-6]. Such patterns have

H[X,Y]=—kg2, P;InP;,
1)

1

22} .
been found, but none seems to be species independerd fl‘::llc':)gding
Hence, traditional coding measurgg based on these pat- &
terns need to be trained on organism-specific data sets befors 0.006

=]
o=

they can be applied to identify coding DNA. This training- ‘
set dependence limits the applicability of traditional coding 5 ‘
measures, as many new genomes are currently being stg 0.004 - \

unct

0n

guenced for which training sets do not exist.

0.002 -

II. MUTUAL INFORMATION FUNCTION

mutual informati

In search forspecies-independestatistical patterns that
are different in coding and noncoding DNA, we study the 0.000 : ‘ ; ‘
mutual information functionZ(k), which quantifies the 0 20 40 60 80 100
amount of informatior(in units of bit9 that can be obtained distance k [bp]
from one nucleotideX about another nucleotid¥ that is
located k nucleotides downstream froX [8]. Within the
framework of statistical mechanics can be interpreted as

FIG. 1. Mutual information functionZ(k), of human coding
(thin line) and noncodindthick line) DNA, from GenBank release

. . 111 (Ref. [10]). We cut all human, non-mitochondrial DNA se-
follows. Consider a compound systéiY) consisting of the qguences into non-overlapping fragments of length 500 bp, starting

two subsystems< and Y. Let p; denote the probability of 4t the 5-end. We compute the mutual information function of each
finding systemX in statei, let q; denote the probability of fragment, correct for the finite length effe@ef.[13]), and display
finding systen in statej, and letP;; denote the joint prob-  the average over all mutual information functiofs coding and
ability of finding the compound systeiiX,Y) in state(i,j).  noncoding DNA separatelyWe find that for noncoding DNA(k)
Then the entropies of the systetdsy, and(X,Y) are defined decays to zero ak increases, while for coding DNA(k) shows
by persistent period-3 oscillations.
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pies of the subsystem$andY is strictly greater[9] than the  values, thein-frame mutual informationZ;, at distancesk
entropy of the compound systenX(Y), i.e., H[ X]+H[ Y] that are multiples of 3 and thaut-of-framemutual informa-
>H[ X,Y]. Themutual informatioriZ[ X,Y] is defined as the tion Z, at all other values ok.
difference of the sum of the entropies of the subsystems and
the entropy of the compound system,
I1l. AVERAGE MUTUAL INFORMATION
AXY]=H[X]+H[Y]-H[X,Y].

The oscillatory behavior af(k) in coding DNA is a con-
If kg is replaced by 1/In2, ther¥[X,Y] quantifies the sequence of the presence of the genetic deddch maps
amount of information ifX aboutY in units of bits[9]. Two  nonoverlapping nucleotide tripletsodong to amino acid$
obvious but noteworthy properties off X,Y] are (i)  and the nonuniformity of the codon frequency distribution.
X, Y]=11Y,X], so the amount of information X aboutyY  The fact that the codon frequencies are nonuniformly distrib-
is equal to the amount of information MaboutX, and(ii)  uted in almost all organisms is well known to biologists, and
I[X,Y]=0, so the amount of information is always non- arises becaudg@) the frequency distribution of amino acids is
negative, and it is equal to zero if and onlyXfandY are  non-uniform, (ii) the number of synonymous codoh%l]
statistically independent. We choo$¥; (k) to denote the that encode one amino acid varies from 1 to 6, &iigl the
joint probability of finding the pair of nucleotideg andn; frequency distribution of synonymous codons is nonuniform
(n;,nje{A,C,G,T}) spaced by a gap df—1 nucleotides, [12].

and we defing;=Z;P;;(k) andq;=Z;P;;(k). Then A simple model that incorporates the nonuniformity of the
4 codon frequency distribution, but neglects any other correla-
Pi; (k) tion, is the pseudo-exon moddll3], which concatenates

(k)= X Pj(k)logy
ihj=1 p| j

(D) codons randomly chosen from a given probability distribu-
tion (Qaaa,---.Q11T), WhereQyy, denotes the probability

quantifies the degree of statistical dependence between tig codon XYZ (X,Y,Ze{A,C,G,T}). As the pseudo-exon
nucleotidesX and Y spaced by a gap dé—1 nucleotides, model has been shown to reproduce the period-3 oscillations
and we studyZ as a function ok for coding and noncoding in genomic DNA[13], we use the model assumption of ne-
DNA of all eukaryotic organisms available in GenBank re-glecting weak correlations between codons in order to ex-
lease 11110]. press the joint probabilitie®;; (k) in terms of the 12posi-

Figure 1 showsZ(k) for human coding and noncoding tional nucleotide probabilities 3 [14] of finding nucleotide
DNA. We observe that for noncoding DNA(K) decays to n; at positionme{1,2,3 in an arbitrarily chosen reading
zero, whereas for coding DNA&(k) oscillates between two frame[15] as follows[3,13]:

L[ PR DR+ pp®, for k=369 ..
Pi(k)=7-1Pi P +pi”p” +p”p, for k=4,710.. . ?)

piVpi> +pi?p{"+pf*pj?, for k=58,11 ...

It is clear thatP;; (k) is invariant under shifts of the read- Tin=2(3) and Z,,=7(4)=1(5) (3
ing frame, because the expressions on the rhs of Hcare
s ne et ams st o e Y PG P10, 810 (5250013

1619 O v e s * Eg. (1). For the sake of obtaining a simple coding measure
are identical after transposition of the lower indice3)X, we  wjith a natural and intuitive interpretation, we compute from
obtainPj;(k=4,7,1Q....)=P;(k=58,11...), which im- 7. and7,, the average mutual information
plies thatZ(k) computed fromP;; (k) of Eg. (2) will assume
only two different values,Z,=Z(3,6,9...) and Z,,
=7(4,5,7,8,10,11. . .).

In order to construct a coding measure that can predict . ) »
whether a single sequence is coding or noncoding, we focudherePn=3 andPo,= 3 denote the occurrence probabili-
on the presencébsencgof the period-3 oscillation in cod- ties of Z;, and Z,,. The value ofZ quantifies theaverage
ing (noncoding DNA, and neglect any other statistical pat- amount[16] of information one obtains about a nucleotide
tern inZ(k), such as the decay @i(k) in noncoding DNA by learning both the identity of any other nucleotién the
and the decay of the envelopeZik) in coding DNA. Based ~same DNA sequence and whether the distanbetweenX
on Eq.(2), we are able to express, for each single DNAand Y is a multiple of 3. We comput& from each single
sequence, the maxima and minima of ) oscillations,  sequence fragmeril7] with the goal to distinguish coding
Zin and Zy, in terms ofpi(m) as follows: we sample from from noncoding DNA. Due to the presence of the genetic

each sequence the 12 frequengf¥ , computeP;; (k) from  code we expect that will be typically greater in coding than
p{™ by using Eq.(2), and then compute in noncoding DNA.

fE 7Din : Iin + 7Dout' Iouta (4)
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1.0 - — ; ‘ TABLE |. Means(variancey of Iogloffor coding and noncod-
~ primates | ing DNA of 6 taxonomic sets. While the means of 195are sig-
= T Yerte:’rl?te: | nificantly different in coding and noncoding DNA, they are almost
c';_ 0.8 . :;;f;se rares | the same for all taxonomic sets. Also the variances oflﬁgare
g almost the same for all tegonomic sets, supplementing the visual
'é 0.6 finding from Fig. 2 that th&-distributions are nearly species inde-
£ pendent.
&
% 0.4 Noncoding Coding
=
I Primates —-2.52(0.3) —2.04(0.30
:_TE Nonprimate vertebrates —-2.54(0.39 —2.06(0.30
g0y Vertebrates ~253(034  -2.05(0.30
& Invertebrates -2.50(0.33 —2.04(0.32

0.0 = = . . NS , Animals —2.52(0.34 —2.05(0.30)

10 10 10 10 10 10 Plants —2.48(0.3) -2.09(0.3)

average mutual information 7 [bits]

FIG. 2. T distributions of coding DNA(thin line and noncod- T is not. If theZ distributions turn out to be species indepen-
ing DNA (thick lines from all eukaryotic DNA sequences in Gen- dent, thenZ could be used without prior training to distin-
Bank release 11{Ref.[10]). We cut all DNA sequences into non- guish coding from noncoding DNA in all species, regardless
overlapping fragments of length 54 kiRef. [17]), starting at the  of their taxonomic origir 20].
5’-end. We computeZ of each DNA fragment and show the
histograms for coding and noncoding DNA, for each of the 4 dis- V. SPECIES INDEPENDENCE OF THE AVERAGE
joint taxonomic sets(primates, nonprimate vertebrates, inverte- MUTUAL INFORMATION
brates, planisseparately. We find thai) for all taxonomic sets

pn(f) is centered at significantly smaller values tfmn(lf), while -2 e !
(i) pe(Z2) and p,(Z) of different taxonomic sets are almost identi- andpng:)' Figure 2 shows thé; d'smbu“qns fofr g%dlng and
cal. The close similarity of the distributions for different taxo- noncoding DNA sequences from species of different taxo-
nomic orders, phyla, and kingdoms illustrates the species indepeftOmic orders, phyla, and kingdoms. We find that fhdis-
dence ofp.(Z) and (D). tributions are significantly different for coding and noncod-
ing DNA, while they are almost identical for all taxonomic
sets. In order to supplement this qualitative finding by a
gquantitative analysis, we present in Table | the means and
variances of logyZ [21]. Table | shows that the means are
First, we investigate how accurately can distinguish ~ Significantly different for coding and noncoding DNA, and
coding from noncoding DNA. ThaccuracyA is defined as  that the means and variances are almost the same for all
follows: Denote bypc(f) andpn(f) the probability density species. This finding is_in agreement with the visual finding
functions ofZ for coding and noncoding DNAsee Fig. 2 based on Fi_g. _2_that thé_distributi_ons are Species indepe_n-
i _ — = = . dent and significantly different in coding and noncoding
Define the overlap integrad(Z) = [ M(Z)dZ, where M(Z) DNA.
denotes the maximum of the two valuegZ) andp,(Z) at
positionZ. In statistical terms()(Z) can be expressed as the VI- UNDERSTANDING THE SPECIES INDEPENDENCE

sum of T, andT,,, O(Z)=T,+T,, whereTy(T,) denotes FOR NONCODING DNA
the fraction of true positivestrue negativesover all posi- In search for a possible origin of the observed species
tives (all negatives [18]. Hence, the accuracy, defined by independence, we attempt to develop simple models that are
A(Z)=0(1)/2, ranges from frong (no discriminationto 1 able to reproduce thé distributions for coding and noncod-
(perfect discrimination[19]. ing DNA.

We use the standard data set and benchmark test from \yq first present a model that reproduces Thdistribu-

Ref.[5] and compare the accuracyBto the accuracy of all tions for noncoding DNA. For a random, uncorrelated se-
of the 21 coding measures evaluated in R8f. We find that  quence of arbitrary compositiorp{,p,,ps,ps), we can de-
the accuracy of [ A(Z)=0.69, 0.76, 0.81 for human DNA rive the asymptotic form of the probability density function
sequences of lengthld=54, 108, 162 bpis higher than p(z) as follows: Taylor-expand(k) aboutP,J(k) piP; .

the accuracy of many of the 21 traditional coding measurege., express/(k) by the power serie&; =7 0aij AP (K)
from Ref.[5]. In particular, A(I) is comparable to the accu- —p;p; 17, and truncate the Taylor series after the quadratic
racy of the hexamer measure H, [A(H) term (/ 2). The constant term/(=0) vanishes because
=0.70, 0.73, 0.74 which is the most accurate of the 21 7Z(k)=0 at P;;(k)=p;p;, and the linear terms/(=1) van-
frame-independentl5] coding measures from Réb]. This  ish becauseZ(k) achieves its minimum aP;;(k) =p;p;,
finding is interesting, becaus¢ (like all other 20 traditional which causes the first derivatives @f(k) to vanish at
coding measuress trained on species-specific data sets, and®;; (k) =p;p;. Hence, the first nonvanishing terms in the

Next, we investigate the ipecies independencec()f)

IV. ACCURACY OF THE AVERAGE MUTUAL
INFORMATION



PRE 61 SPECIES INDEPENDENCE OF MUTUAL INFORMATION . .. 5627

Taylor-series expansion are the quadratic terms R), and 1.0
we obtain
1 [Pi;(k)—pip;]?
(k) — 2, ——F—, 5
( )ocln2 T 2pip; ®)

where the symbolx indicates that we neglect terms of
O[(Pij—pipj)3]. SubstitutingP;; (k) (for k=3,4@ by the

expressions on the rhs of E(R) and expressingd=[Z(3) 0.0 s . Do ,
+Z(4)+7Z(5)]/3 in terms ofp™ yields 10 10 10 10 10
_ 1 (pi™—pp?]? L0
Thal% ©

For a random, uncorrelated sequence the probability densit <
function ofNEi,m(pi(m)—pi)zlpi converges, for asymptoti-

cally large sequence lengti, to a x? distribution with 6 & 04t
. — <

degrees of freedorfi22]. Hence, we obtain tha#(Z) con- < 0.2
verges, for asymptotically largs, to ’
0.0

— (NYIn2® =  _~ 10

p(I): ! . I e*N\“‘m\‘I. (7) . . N2 .
4 rescaled average mutual information N 7 [bits]

Figure 3a) showsp(Z) from Eq.(7) and theZ histograms FIG. 3. Rescaled’ distributions of model and experimental,
for human noncoding DNA foN=>54, 108, and 162 bp. We coding and noncoding DNARef. [10]). Fig. 3a) shows the histo-
find that(i) the Z distributions for noncoding DNA collapse 9rams of logoNZ for human noncoding DNA foN=54 bp (O),
after rescaling with a factor oN2 and that (i) the 108 bp(0), and 162 b <), and the corresponding? probability

— . density function with 6 degrees of freeddthick line). In addition
T-distributions can be approximated by E@). The agree to the observatiotiFig. 2) that theZ distributions are almost iden-

ment of the theoretl_cal _W'th the experlnlen.faﬁ_lstrl_butlons tical for different species, we find thé) the rescaled. distribu-
states that the species independence ofttistributions for  tjons collapse for all taxonomic sets and for ldlland thatii) they
noncoding DNA may be attributed to the absence of theagree with thex? probability density function. Hence, the species
genetic code in noncoding DNA of all living species. independence of th& distributions for noncoding DNA may be
explained by the absence of a reading frame in noncoding DNA of
all species. Figure (®) shows the histograms of lggN?Z for hu-
man coding DNA sequences of lengdth=54 bp (O), the probabil-

. L = . ity density function for model sequencghick line), and the central
We now test if the species independence of Iheistri- 2 | o1ii density functior(thin dotted ling. We find that(i)

butions for coding DNA may be reproduced by a simple = N . I
model that incorp(g)rates the pyresencg ofa readinyg 1‘ramei.:)\/\}ge modeled’ distribution thick line) is indeed shifted to highef
lues than thé& distribution of noncoding DNAthin dotted line,

generate a random, uncorrelated sequence where the prof* A e S TS
ability of obtaining nucleotiden; at positionm is given by but that(ii) the Z distribution of the model sequencéhick line) is

p{™ averaged over the entire set of DNA sequences foﬁDiarXfngnt'¥hdiﬁ?fe:_t fron:j_ftfheI disgibmion Okf] hum:nl ZOdi“dg h
which the model is constructg2B]. Figure 3b) shows theZ ( ) Es'_gm_ |ca.nt flerence between the modeled an t ©
histograms for the model sequences and for human codin perimentalZ distribution states that the presence of a reading
DNA sequences of lengtN=54 bp. We find that th dis- (;ias:?if)L:?i:r?; zt;f(f:lg:ﬁ:;tgsmlz?én ;?e species independence df the
tribution of the model sequences is significantly different e

from the Z distribution of human co_ding DNA sequences. VIIl. CONCLUSIONS

We perform the same analyses for different organisms, rang-

ing from simple bacteria to complex vertebrates, as well as We reported the finding of a species-independent statisti-
for differentN, and we find that in all cases the modeled cal quantity, the average mutual informatiénwhose prob-
distributions cannot reproduce tfedistributions of experi- ability distribution function is significantly different in cod-
mental, coding DNA. This result shows that the presence oing and noncoding DNA. We showed thatcan distinguish

a reading frame in coding DNA is not sufficient to reproducecoding from noncoding DNA as accurately as traditional
the 7 distributions of experimental, coding DNA, and thus coding measures, which all require prior training on species-
cannot explain the observed species independence for codisgecific DNA data sets. The capability @fto distinguish
DNA. This finding leads us to the conclusion that there mustoding from noncoding DNA without prior training and ir-
exist additional correlations or inhomogeneitj@d] in cod-  respective of its phylogenetic origin suggests thatight be

ing DNA, which are responsible for the observed speciesuseful to identify coding regions in genomes for which train-
independence of thé distributions. ing sets do not exist. In an attempt to understand the origin of

VII. UNDERSTANDING THE SPECIES INDEPENDENCE
FOR CODING DNA
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correlations or inhomogeneities are a vital and species-
independent ingredient of coding DNA sequences of any liv-
ing organism.

the observed species independencg,oﬂve found that the
species independence pf(Z) may result from the absence
of a reading frame in noncoding DNA. We derived analyti-
cally theZ distribution for an ensemble of random, uncorre-
lated sequences of arbitrary composition, and we showed
that this distribution is consistent with the obsenzdistri-
bution of noncoding DNA for all species and all sequence We thank D. Beule, C. DelLisi, J. W. Fickett, R. Guigo, K.
lengthsN. For coding DNA, we could show that the presenceHermann, D. Holste, J. Kleffe, L. Levitin, W. Li, K. A.
of a reading frame in coding DNA sequences is not sufficienMarx, A. O. Schmitt, T. F. Smith, E. Trifonov, Z. Weng, and
to reproduce the observedl distributions of coding DNA. M. Q. Zhang for valuable discussions, and NIH, NSF, and
This finding makes it tempting to conjecture that additionalDFG for financial support.
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